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Abstract: In this paper a different kind of fuzzy logic controller structure is proposed with 
a different viewpoint where the controller has no rulebase and no membership functions. 
However composing the structure of the controller is based on the concept of fuzzy logic 
and human decision making. The controller is applied to a nonlinear system successfully 
and the results are shown. Control surfaces obtained from this controller is similar to the 
surfaces obtained from conventional fuzzy logic controllers.  The controller is suitable to 
apply easily in case of more than two inputs in the controller structure and computation of 
the output from the controller is computationally efficient. Copyright © 2007 IFAC 
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1. INTRODUCTION 

 
Although it has a long history, fuzzy logic control 
applications in the literature have increased in the 
last decade. Fuzzy logic controllers simulate the 
decision making process of the human beings. There 
were debates over the use of fuzzy logic controllers 
where it is stated that humans are not good 
controllers (Abramovitch and Bushnell, 1999). These 
debates are over now as it is understood that the 
decision making process of the humans is combined 
with the accurate computing power of the computers. 
 
Designing fuzzy logic controllers for a system may 
not be very easy. There are many parameters which 
have to be determined to setup a fuzzy logic 
controller. Especially we need to determine the rules 
which are in the form of if-then statements that 
simulate the decision making process. These rules 
also consist of linguistic variables used by humans 
hence these linguistic variables must be modeled 
using membership functions. In this paper, a fuzzy 
logic based controller which does not have a rule 
base and membership functions has been proposed. 
Instead, there is a mapping curve which assigns a 
logical value to the input and output variables and 
the rules are inherently consisted in the structure of 
the controller. 

2. STRUCTURE OF THE CONTROLLER 
 
As it is well known, there are curves named 
membership functions representing linguistic 
variables in the structure of Mamdani type fuzzy 
logic controller (Mamdani, 1974) where inputs and 
outputs are represented with linguistic variables with 
these membership functions as shown in Figure I. 
Takagi-Sugeno type fuzzy logic controller (Takagi 
and Sugeno, 1985) has different structure where 
outputs are not represented with membership 
functions but represented by various functions 
instead, most often polynomials. 
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Fig. I. Mapping of concept heat to the interval 
 [0 1] with membership functions. 
 

     



The structure of the controller proposed in this paper 
models the concepts as a whole and maps them to the 
interval [0 1] with one curve as shown in Figure II. 

     

 

Fig. II. Mapping of concept heat to the interval  [0 1] 
with one curve. 

 
 
1.1 Mapping inputs to the interval [0 1] 
 
Mapping of the inputs to the interval [0 1] is done as 
shown in Figure II. If we assign 0 to the one end of 
the concept heat then we must assign 1 to the other 
end. Here 1 is assigned for cold and 0 is assigned for 
hot. Linguistic variables between these two will take 
the values between 0 and 1. 
  
The flat regions at this curve represent our decision 
is clear in that region. Here linguistic variables cold, 
medium and hot are the regions where our decision is 
clear. There may also be more flat regions than these 
at this curve however there will be at least two 
specific flat regions at the ends of the curve if the 
input space is infinite. The curves which are not flat 
represent the regions where our decision is not clear 
or fuzzy and connect the flat regions. 
 
The numbers assigned to the inputs here are 
meaningless but will gain a meaning  at the output. 
For instance, consider an IF-THEN statement in the 
form: 
 
IF the water is hot THEN I will make tea 
 
The IF part of the statement is meaningless if THEN 
part of the statement is not known hence one cannot 
conclude if the water is hot or not. 
 
1.2 Mapping of the output to the interval [0 1] 
 
Mapping of the output to the interval [0 1] is 
somewhat different as shown in Figure III. 
 

Fig. III. Mapping of voltage to the interval [0 1]. 
 

It seems like the mapping is linear but the mapping 
of the output can be nonlinear as seen on Figure IV. 
 

Fig. IV. Nonlinear mapping of voltage to the interval 
[0 1]. 

 
Moving a point in the output space arbitrary to the 
left or right without moving the number assigned to it 
in the interval [0 1] will make some regions in 1-D 
output space to tighten and some regions to widen. 
 
There are not any flat regions at the output curve thus 
this makes the output from the controller to be 
unique for any inputs. 
 
 
1.2 Relationship between the inputs  and output 
 
The relationship between the inputs and output is 
shown in Figure V. Every input can be considered 
separately. Input 1 is intersected with the curve 
assigned to it and mapped to the interval [0 1]. Input 
2 is also intersected with the curve assigned to it. 
Corresponding output value for input 1 can be found 
by intersecting with the output curve from the value 
assigned to it in the interval [0 1] which is shown as 
in Figure V. The procedure is same for the input 2. 
Here corresponding output value for input 1 is U1 
and corresponding output value for input 2 is U2. 
The meaning of this is input 1 decides what should 
the output to be for its current state and input 2 
decides what should the output to be for its current 
state. Thus there will be two different output values. 
While we cannot apply two different outputs to the 
system at the same time we must conciliate these two 
outputs. This procedure is done with the calculation 
of the arithmetic average of the logical numbers 
assigned to the inputs which are a and b, and 
intersecting obtained value with the output curve as 
shown in Figure V. While the output curve is 
nonlinear final output value could not be obtained by 
taking the arithmetic average of U1 and U2. This 
procedure is same for the application to multi input 
controllers. For example; if there are four inputs then 
we will have four logical values separately to be 
conciliated. Thus we have to divide the sum of these 
logical values to the number of the inputs. If there is 
a weighting filter in the controller structure which is 
explained in section 1.4 we have to use these weights 
while dividing the sum of the logical values. For 
instance; in case of two inputs and if one of them is 
weighted then the control input will be calculated by 
dividing the sum of logical values to (1+w) where w 
corresponds to the weight of the related input. 
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Fig. V. Relationship between inputs and outputs.

Fig. VI. Distance controller structure for a car.

 
1.3 The rules consisted inherently in the controller 

structure 
 
There are rules important for decision making 
process in the structure of fuzzy logic controllers. 
The controller proposed here also has rules but 
these are not explicitly introduced to the controller. 
These rules can be found inherently in the structure 
of the controller. Let’s consider a simple example 
from (Tanaka, 1996) as shown in Figure VI. Here 
the controller is controlling the distance between 
two cars.  The inputs to the controller are distance 
and speed and the output is acceleration. Some of 
the rules which are needed for control will be as 
follows: 
 
Rule 1: IF the distance is short 
             AND the speed is slow 
             THEN maintain the speed 
 

 
Rule 2: IF the distance is short 
             AND the speed is fast 
             THEN decrease the speed 
 
Rule 3: IF the distance is long  
             AND speed is slow 
             THEN increase the speed 
 
Rule 4: IF the distance is long 
             AND speed is fast 
             THEN maintain the speed 
 
Applying the procedures mentioned in section 1.2 it 
can be seen that these rules are obtained with this 
structure. It can also be seen that we can obtain 
other rules such as: 
 
Rule 5: IF the distance is medium 
             AND speed is medium 
             THEN maintain the speed
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Fig. VII. Structure of the controller with weighting filter. 
 
If we use conventional linguistic variables which 
are used with fuzzy logic controllers such as P, PM, 
Z, NM, N for the outputs we can obtain the general 
structure of the rule base obtained with this 
controller as shown below: 
 

  Distance 
  S M L 

F N NM Z 
M NM Z PM Speed 
S Z PM P 

 
This rule base is similar to the rule bases mostly 
used with the fuzzy logic controllers. 
 
Even though there is not any rule base for this 
controller there is no need to assign linguistic 
variables either for the inputs or for the outputs but 
it is shown that they are inherently consisted in the 
structure of the controller. 
 
1.4 Weighting  filter 
 
There may be a need to weight the inputs in some 
circumstances. In this case a weighting filter can be 
used which weights one input by looking at the 
state of another input. For instance; linguistically 
we can express this as follows: 
 
If the change in error is positive reduce the 
importance of the error.  
 
Thus the controller will pay more attention to the 
decision made by looking at the change in error. 
This is in fact corresponds to the changing the 
composition of the rule base.  If we reduce the 
weight of the error to 0 just in case the change in 
error is positive the general structure of the rule 

base obtained from the controller will be as shown 
below: 
 

  Error 
  PB Z NB 

N P PM Z 
Z PM Z NM Change 

in Error P N N N 
 
If the change in error is positive, the controller will 
calculate the output just by looking at the decision 
made by the state of input change in error, while 
the weight of the error will be 0 when the change in 
error is positive. With the addition of weighting 
filter the structure of the controller will be as 
shown in Figure VII. From the figure it can be 
easily seen that weighting filter is a one to one 
mapping curve from the logical space in the 
interval [0 1] to the weighting space in the interval 
[0 1]. 
 

3. APPLICATION EXAMPLE 
 

This controller is applied to the well known 
inverted pendulum which is used as a benchmark 
system for control applications. Although the 
controller has four inputs and one output, the 
application of the proposed controller to the 
inverted pendulum was very easy and successful. 
To be able to show the control surfaces another 
nonlinear system is selected which is a four rotor 
unmanned air vehicle called quadrotor. Block 
diagram of the controlled system is as shown in 
Figure VIII. There are six fuzzy-PD type 
controllers controlling the system and four of them 
are different in structure. Controllers are coded in 
embedded MATLAB function block in Simulink. 
The structure of the fuzzy-PD controllers are 
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shown in Table 1. To be able to show small 
changes at the curves, these curves are not plotted.  
 

 
Fig. VIII. Block diagram of the controlled system. 
 
Dynamic model of the quadrotor is as shown below 
with the assumption of xx y

     

yI I=  (Bouabdallah, et 
al., 2006): 
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From the dynamic model we see that the system is 
nonlinear, unstable, underactuated and coupled. 

Table 1. Structure of the controllers 

Z controller structure 

e  0 0 0.49 0.5 0.51 1 1 
-1 -0.5 -0.001 0 0.001 0.5 1 

de  0 0 0.4 0.5 0.6 1 1 
-3 -2 -0.2 0 0.2 2 3 

output 0 0.4 0.5 0.6 1 
-51.809 -50.38 9.81 70 71.429

X and Y controller structure 

e 0 0 0.45 0.5 0.55 1 1 
-1 -0.5 -0.1 0 0.1 0.5 1 

de 0 0 0.4 0.5 0.6 1 1 
-2 -1 -0.1 0 0.1 1 2 

output 0 0.4 0.5 0.6 1 
-1 -0.6 0 0.6 1 

θ and ψ controller structure 
e 0 0 0.4 0.5 0.6 1 1 

-3 -0.8 -0.05 0 0.05 0.8 3 

de 0 0 0.5 1 1 
-3 -2.5 0 2.5 3 

output 0 0.4 0.5 0.6 1 
-704.23 -600 0 600 704.23 

φ controller structure 

e 0 0 0.5 1 1 
-1 -0.5 0 0.5 1 

de 0 0 0.5 1 1 
-3 -2 0 2 3 

output 0 0.5 1 
-3662 0 3662 

 

In Table 1 first row corresponds to the logical 
values assigned to the values shown in second row, 
which are the values from the input or output 
spaces. Controller Z is controlling the altitude by 
looking at the error and change in error and 
deciding what the input U1 should be. Controllers 
which are controlling X and Y motion decide what 
the angles θ and ψ should be and their structures 
are same. Controllers controlling θ and ψ angles 
decide what the control inputs U2 and U3 should 
be and their structures are same as well. Finally 
controller which is controlling the φ angle decides 
what the control input U4 should be. Controlling X 
and Y motions through the states θ and ψ will 
reduce the degrees of freedom of the system to 4. 
Control surfaces obtained from these controllers are 
calculated with Mathematica and shown in Fig. XI, 
X, XI and XII. From the control surfaces it can be 
seen that these surfaces are similar to the surfaces 
obtained with conventional fuzzy-PD type 
controllers (Passino and Yurkovich, 1998). System 
responses to the desired references Xd=4m, Yd=3m, 
Zd=4m, φd=pi/6 are shown in Figure XIII, XIV, 
XV, XVI, XVII and XVIII. 
 

 
Fig. IX. Control surface of Z controller. 
 

 
Fig. X. Control surface of X and Y controller. 
 

 
Fig. XI. Control surface of θ and ψ controller. 
 



 

 
Fig. XII. Control surface of φ controller. 
 

 
Fig. XIII. X versus time. 
 

 
Fig. XIV. Y versus time. 
 

 
Fig. XV. Z versus time. 
 

 
Fig. XVI. θ versus time. 
 

 
Fig. XVII. ψ versus time. 

 

 
Fig. XVIII. φ versus time. 
 
 

4. CONCLUSION AND FUTURE WORK 
 
A different kind of fuzzy logic controller is 
proposed with a different viewpoint. Although it 
seems complex, the structure of the controller is 
simpler than the conventional fuzzy logic 
controllers as there aren’t any rules and 
membership functions. Hence control applications 
with multi-input controllers will be very easy. 
Controller has guaranteed continuity at the output 
as it is with T-S type fuzzy logic controllers. 
Control surfaces of fuzzy-PD type controllers used 
in the application example are similar with the 
surfaces obtained with conventional fuzzy-PD type 
controllers. The fuzzy controller proposed here 
may not be as flexible as the conventional fuzzy 
logic controllers but it is anticipated that it can be 
used with most of the linear and nonlinear systems. 
Tuning of the controller is very easy with a trial 
and error method however there is a need to make 
the controller adaptive with a learning algorithm so 
it can optimize itself as it controls the system.  
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